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There’s a long history in understanding
imprints of causality on scattering amplitudes

(microcausality, macrocausality, Bogoliubov causality,
no Shapiro time advances, ...)

[Bogoliubov, Schutzer, Tiomno, van Kampen, Gell-Mann, Goldberger, Thirring, Wanders, Iagolnitzer, Eden,
Landshoff, Peres, Branson, Omnes, Chandler, Pham, Stapp, Adams, Arkani-Hamed, Dubovsky, Grinstein,
O’Connell, Wise, Giddings, Porto, Camanho, Edelstein, Maldacena, Zhiboedov, Tomboulis, Minwalla, ...]

Although never made precise, it 1s generally believed that causality
is encoded in complex-analytic properties of the S-matrix



So natural, we no longer consider complexification strange

Multiple practical reasons:

* Theory of complex angular momenta, dispersion relations,
on-shell recursion relations, ...

* Crossing symmetry

ete” — Y ye — ye

s >0 s <0

can we get it “for free”?



Analyticity is best understood for 2 — 2 scattering of the lightest state in
theories with a mass gap M for low momentum transfer:

s att =1, <0

—t, AM2 * s-channel
¥ X X % >

u-channel ?

“Fuclidean region”

S(s,tx) = lim Sc(s+ ie,ty)

e—0t
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How does this picture extend to more realistic processes?

massless and unstable particles,

Standard Model D) UV/IR divergences,

higher-point processes



Outline

. Unitarity constraints

Holomorphic ¢
cutting rules > m W
Discontinuities
Tinsc, Tclﬂ(jz Tc 22222 Tin—>Cl Tc —Cs Tc —o beyond normal
thresholds

* Causality constraints

Ditferent ways of f
implementing causality ~ “

- Deforming branch cuts

in the kinematic space




Notation:

* S-matrix operator: § = 1 4 ¢T
matrix elements 1T = (out\T\in)

* For 2 — 2 scattering

. 2
s = (p1+p2) t:(p2+p3)2 UZ(p1+p3)2

* Subject to momentum conservation
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Unitarity, ST = 1, implies that

Sum-integral over all
/ the intermediate states

L(T —T") = 47T

The RHS 1s non-holomorphic and doesn’t manifest all singularities

Eliminate 77 = T(1 + iT)_l and expand the geometric series



This results in holomorphic cutting rules

(T =TT = =3 (—iT) !
c=1

N

number of unitarity cuts

* 'The place where a new term on the RHS starts contributing is
called a #hreshold: a potentially violent event that could give rise
to singularities or branch cuts

* The phase-space 1s so small, it only allows for classical
scattering configurations

[Coleman, Norton]



Diagrammatically
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Putting propagators on shell: 2 _m? i
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There are two types of thresholds on the RHS:
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or Landau singularities

(purely temporal) (spatially spread out)
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Simplest example:

| !
!
D2 —p—— —P4 —A A: :
\ 17\ /7 A\ /7 A\
Im £q, N = v + ;N = YN
77N / \ / \ / \
D1 P - —<-p- —p3 — - —— —J-—-—:-b— _J.IL__IL;_
|
Cutis Cut3s Cut?,,

When can we build a triangle diagram with 3 momentar

25 (M2 — (Mgo + mg+)?) (Mi — (Mgo — Mg+ )?) -
cosf =1— 5 5 2
mZ, (s — (mg+ +mp)?) (s — (Mmr+ —myp)?)

: Rt W e T T et e L L] L
* Widths move the peak to a complex plane: Breit-Wigner-like distribution . S B B

Vs (GeV)

e  Heavily suppressed compared to tree-level processes
y supp p p
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E

How is this consistent with - ey sded )

At a threshold, we can time order the interaction vertices:

But if all external particles are stable, we must have a7 /east
2 incoming particles interacting at the same vertex:
for 2 — 2 this implies only normal thresholds for physical kinematics

s=(mi+mg+...)°
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We need to worry about anomalous thresholds for

* Higher-point scattering
* 2 — 2 processes with unstable particles
* Discontinuities of amplitudes

* Branch cuts in analytic expressions

Recent pheno-oriented work includes hadron spectroscopy,
bbH production, Z7Z — ZZ scattering, ...

[Liu, Oka, Zhao, Meissner, Guo, Denner, Dittmaier, Hahn, Boudjema, Ninh, Passarino, ...]
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s

It 1s reasonable to ask how much of the : o ae et (AHI1HON SUTVIVES

In particular:

* Can we always uplift the S-matrix to a complex-analytic function
in a way consistent with causality?

?

T(s,t.) = lim Tc(s+ ie, ty)

e—0+



* Is the imaginary (absorptive) part

ImT(s,t,) = % (T(s,t*) _ T(s,t*))

always equal to the discontinuity

Disc,Tc(s,t,) = lim = (T@(s—l—is,t*) — T@(s—is,t*)> P

e—0t 21



Where do we even start?

Convert into algebraic problems for every Feynman diagram:

P Y
We'll explain these Y =0 foranya’s < branch cut

conditions on the 0o,V =0 forany a’s < branch point

next slides ImV >0 foralla’s & causal branch



We already know branch points are classical scattering configurations:

Momentum ¢~

Mass M
Schwinger proper time @ = 0

Space-time displacement Azt = a.q
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Momentum conservation at every vertex:

DS

edv 13V

L.ocal interactions at vertices:

On-shell conditions for every edge:

ge —me =0

Landau equations [Bjorken, Landau, Nakanishi]



Simplest example:

on-shellness
1

Pu P ' ' | —— | ) .
AV

momentum conservation locality
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™~ lLorentz invariant



Can be concisely summarized as:

2 109
Q2 2 YV =s — mia; — mias
o —m7 =0, Q1+
1T
2 0o,V =0
—ms5 =20 _
041-|-042> ’ OayV =0

The solutions are

1 1

(a1:a2) = (— : i—) s = (m1 £my)”

mi ma

Note projective invariance in Schwinger parameters
and kinematic variables separately

DD

+ normal threshold

pseudo-normal threshold



In practice, Schwinger parametrization of the bubble integral gives:

©. @)

daq dao 12

/ 2Dz d(ap + g —1) with V=s — mia; — msa
o V a1 +a

* When V = 0, we have to make a decision how to
deform away from it (branch cut)

* Causal branch determined by Im)V > 0



There are three options for implementing ImV > 0 (V=s—> —mia; — mlay):

a1+

m? — m? — ie s — s+ ic Qe — Qe

6 8 10 12 14 6 8 10 12 14 6 8 10 12 14

Res Res Res
Feynman ie Kinematic s+ Branch cut deformations

(moves branch points, unphysical)  (doesn’t work in general)
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for the experts

This structure 1s not a coincidence!
For any Feynman diagram we can detine the world/ine action

F
V(ae; Si7 me) — 3

Z/{?

where the two Symanzik polynomials are given by

> Moo 7= 3 4 []a-uYnie

spanning e¢T spanning  e&Tp,Tr
trees T 2-trees 11, UTR
X 1o
;f i{- = = V=s5—— —mio
N o1+
o ol S o,
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Summary so far:

Worldline action

V=0 foranya’s < branch cut

Extremizing gives a 0.,V =0 foranya’s < branch point
classical saddle point

ImVY >0 for all a’s & causal branch

How to implement consistently?

Analytic properties can be studied without explicit computations



D2

D1

Nowadays we have powerful algebraic geometry tools

>

D3

D5

D4

2
Y5 = (512515 — S12523 — S15545 + 534545 + 523534)" — 4523534545(S34 — S12 — S15)

to address such questions [SM, Telen 21]

Two-Loop Hexa-Box Integrals for Non-Planar
Five-Point One-Mass Processes

Samuel Abreu,3 Harald Ita,* Ben Page,! Wladimir Tschernow*

! Theoretical Physics Department, CERN, Geneva, Switzerland

2Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,
UCLA, Los Angeles, CA 90095, USA

3 Higgs Centre for Theoretical Physics, School of Physics and Astronomy,
The University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK

4 Physikalisches Institut, Albert-Ludwigs- Universitit Freiburg,

D-79104 Freiburg, Germany

[hep-ph/2107.14180]
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They very quickly get out of hand:
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Why couldn’t we just use s + ic ? First sign of problems:

M?

%
(my+ma+...)2

By momentum conservation

4
(s¢z’5)+t+u:ZMf

1=1

Off-shell:
branch cut between

M? + e

On-shell;
branch cut between

S F 1€



Once we encounter a branch cuts for all S, there are two possibilities:

Can connect uppet- and lower-half planes Cannot connect
(two distinct analytic functions)

There’s no unique way to approach physical regions!



We are forced to perform branch cut deformations:

s

\/\/ physical sheet
¥ x*

I t



Causality: giving worldlines a small phase  [sm 21

e — e exp(icdy, V)
=, (1 +i€0, YV +...)

At the level of the action:

E
Y V+z’eZae(8%V)2 1
e=1

Breaks down directly
2 0 at the branch points



In practice, we only need a sufficiently small €
(as opposed to infinitesimal)

Loub P Branch cut deformation
20 L
15 :
10 :
5 el |
| el o Feynman 1€
0 = — E

1078 1072 107! 1 10
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Using this technique, one can show two general results:

* 2 — 2 scattering with no unstable external particles:

T(s,ty) = lim Tc(s + ie, ty) Im T = DiscsT¢

e—0+

(previously only established when the Euclidean region exists)

* 2 — 2 scattering with unstable external particles:

T(s,ts) # lim Tc(s *ie, is) Im T # Disc, T¢

e—0*



The simplest example:

u
p2 /,\\ P4 Internal masses 71N
a1 v \ (2
/ a3z N External masses M 2m
py —é——=—v— ps ~

uaias + M?asz(ar + as)

Ckl—I—CV2—|—CV3

Action: VY =

— mz(oq + as + as)



Unitarity in the s-channel:

7 N
\ \
= V \ + / \I
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Cutig Cutg

External mass singularity
(present for any S)

34

Cutiag
Triangle threshold
M4
S= T Tl



»~p— D3

P4
Im >12 sV
E‘\*—P— —DP1

Unitarity in the u-channel:

s =4(M?* —m?) —

Normal threshold External mass singularity
U« (present for any S)
| l
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Triangle threshold (forbidden kinematically)



Two distinct analytic functions in the UHP and LHP:

UHP .z : 1"‘%—(@) . ( B 1+§+Cﬁz>
Itl‘l (8 t)_4M2IBZCE{z;1}{CL12 (1+§+Cﬁyﬂz +CL12 1 1—|—§—|—Cﬂyﬂz
ok ( Cﬁzﬁyz) Ak (1 T cﬁzﬂyz) e log( @ﬂyz)

L4208 \[ 142+,
Folos (1+ +Cﬁyﬁz) [_““‘)g( T+ +Cﬁyﬁz)]}

z 1+ 2-(B. o, 1+§+Cﬁz>
0P 2 {@12 (Fraraas) * (- i

+2“2(1i?f2 )_2L12(1i2/f; )_2”“0‘%( Hﬁﬂﬁz )

1+ 2+ (B: .
+Clog(1+§2+Cﬁyﬁz) [7m+log(

ILHP(S t)

tri

1435 + CByb-
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1+ 2+ (B, )H o ST

where

4m? 4M?

. 4
=Vi+tz, B.=-i —1+;y.



uaiog + M?az(ar + az)
a9 + a9 + 3

Causality requiresIm)y > 0 (v = —m?(a; +az +az) )

102

a1 + Qg + a3

ImyY = Imu

1
— —_Ims 172 > 0
a1 + Qg + O3

<0 > 0

Approach both s- and u-channel physical regions from LHP



Comparing numerical and analytic expressions:
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Finally, summing over multiple Feynman diagrams

10 T T T T T T T T T T T T T T T T T T T T T T

Res
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Many open questions, for example:

* How big of a mistake we’d make by always approaching
the s-channel from the UHP?

< (37)"

* BEffect on practical Standard Model computations?
e.g., L1 — 17

* What is the analogue for 2 — 3 scattering?



Since singularities are already determined by saddle points

Qe = Qi A(s,t, M, m) =0

Why don’t we just study fluctuations around such saddles:

ae = + 0 + ..., A(s,t, M,m)=04+6A+...

TL.ocal behavior around the threshold



So far limited to isolated and non-degenerate saddles
(excludes massless Feynman integrals)

G

\_ G/
pRil X
(AP if p<0

Lo ~ #HI*% <

1

\logA if p=20

La/yD —Eq/y —2dng,, — 1

where p =
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For example, near every normal threshold

a1
87
b1 ' P4

D2 L b3

T ~ #I;LI;R X
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Naively, A? would suggest that the S-matrix
can have arbitrarily-singular behavior...

We’re rescued if we assume analyticity
(at most codim-1 singularities): Eq/, — Lg/,D <1

_ La/yD —Eg/y —2dn,,, — 1

> —1
2

Jg

Every 1VI component can only lead to singularities of the type

1 1
. —— logA
A A &



Summary

. Unitarity constraints

Holomorphic @
cutting rules > m W
Discontinuities
Tinc, TCh*)Cz TC 22222 Tin—>c1 Tc —Cs Tc —o beyond normal
thresholds

. Causality constraints

Different ways of
implementing causality ~~

.........

- Deforming branch cuts

in the kinematic space
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Thank you



