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Surprisingly little is known about
scattering amplitudes in string theory
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Veneziano amplitude

Center of  mass energy

Momentum transfer

Inverse string tension

Polarization dependence
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Higher-loop contributions

Textbook definition of  string amplitudes

Moduli space of  genus-g
Riemann surfaces with n punctures

or
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Known for low g and n

isn’t entirely correct, e.g., not consistent with unitarity
(the integration domain isn’t known)



The underlying problem is that we formulate string amplitudes
on a Euclidean worldsheet, but the target space is Lorentzian

(the reason to formulate the theory on a Euclidean worldsheet in the first place
is to be able to use CFT technology, manifest UV finiteness, …)
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in this talk



Why hasn’t it been a problem before?

Most computations done:

[enormous literature: Green, Schwarz, Gross, Veneziano, Amati, Ciafaloni, Di Vecchia, 
Koba, Nielsen, D’Hoker, Phong, Martinec, Bern, Dixon, Polyakov, Kosower, Vanhove,
Schlotterer, Mafra, Stieberger, Brown, Broedel, Hohenegger, Kleinschmidt, Gerken,

Roiban, Lipstein, Mason, Monteiro, ...]

• At tree level

• At loop level in the              or high-energy expansion

(meromorphic functions)

(branch cut ambiguities fixed by matching with EFT)
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Challenge:
Specifying the external momenta     ,

can we compute any of  the string loop amplitudes?

7



In this talk we’ll do it for one-loop superstring amplitudes
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Outline of  the talk

1) From Euclidean to
Lorentzian worldsheets

2) Unitarity cuts
of  the worldsheet

3) Rademacher expansion

4) Physics of  one-loop amplitudes
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Let’s start at tree level
(            from now on )

s-channel poles come from                           , so set               and take  

massless level-1 level-2
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Length of  the neck
(Schwinger parameter)



Important distinction

Euclidean proper time

Lorentzian proper time
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This tells us about the correct integration contour

We can resum

infinite number of  string resonances
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Strategy for finding the contour at higher genus

• Identify local variables
• Continue to Lorentzian signature locally in the moduli space

• Glue everything together

[Witten ‘13]
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Genus-one superstring amplitudes
In this talk we focus on the planar annulus contribution

Jacobi theta function

Modular parameter
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[Green, Schwarz ‘82]



Various degenerations need the Witten iε

Massive pole
exchange

Wave-function 
renormalization

Tadpole Non-separating 
degeneration

Unitarity cuts
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Let’s focus on the contour in the fundamental domain,

Approach the 
essential singularity 
from the right 
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Adding the other planar contribution: Möbius strip

Planar
annulus

Möbius
strip

Closed-string pole
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Our proposal for the correct integration contour

Precise shape 
doesn’t matter

Approach 0 and ½ 
from the right

(similar for non-planar amplitudes)
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For the imaginary part we only need

Size of  the circles 
doesn’t matter

They’ll give as unitarity cuts of  the planar annulus and the Möbius strip
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At genus one we expect

Two options:

• Do unitarity cuts “by hand” just as in field theory
• Let the worldsheet do it for us

On-shell states
with positive energy

Masses squared are integers

Thresholds
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First do it by hand

• Color sums • Polarization sums

• Loop integration

gluons gluinos

(not feasible beyond the massless cut)
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After the dust settles

On-shell phase space
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General form after including massive exchanges

New thresholds opening up

Double poles at every positive integer

Need a computation to determine the integrand, e.g.,

with
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Shortcut computation using worldsheet methods
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For the purposes of  this talk, we only compute a toy model:

Dedekind eta function

After modular transformation                : 
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Expand in large         :

Exponentially suppressed 

Close the contour downstairs picking up the residue at          :     



Full worldsheet computation also has     moduli and evaluates to

which gives us the polynomials we needed, e.g.,
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Encode the spectrum of  
type-I superstring

(computed up to            )



Bottom line:
Everything converges and can be
computed with arbitrary precision
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(plots later on)
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The idea is to recycle this computation (infinitely) many times 
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Recap:

We just computed its imaginary part with

The full genus-one amplitude is computed by     



Farey sequence

all irreducible fractions between 0 and 1 with the denominator 
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Ford circles

circle touching the real axis at     with radius       in the    plane  

Each one is a modular 
transform of  
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Rademacher contour

follow all the Ford circles in the Farey sequence      from 0 to ½  

Original contour
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... and so on
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Not a complete circle yet



In the limit, we enclose all the circles

We call it the Rademacher contour
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[Rademacher ‘43]



Back to the toy model
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(bosonic open string partition function)

Recycle previous 
manipulations
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Modular transformation

Push the horizontal contour 
all the way up

Only one term survives

Evaluate by residues

The result is a fast-convergent series expansion
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The full computation is technically much more involved,
but conceptually similar; the final result is

Every term can be interpreted as summing over
c windings with punctures distributed on the folds:

Cusp contribution (easy)
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Each term is almost the same as before

Sawtooth function
(arises because of  infinite number of  branch cuts)

Glue two Veneziano amplitudes with extra phases

Integrate over the
phase space
(manifestly convergent)
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Convergence

4 sums

• Worst-case scenario (all phases vanish) : logarithmic divergence,             
• Best-case scenario (random phases): converges as 
• True rate of  convergence somewhere in the middle 
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We can now analyze the results
(this talk: planar amplitudes in the s-channel only)

We often normalize by               to remove the double poles

does not include the     tensor
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Most of  the 
known results
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Total cross section
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New thresholds opening up very slowly
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Contribution from masses        and           
flowing through the unitarity cut



Low-spin dominance
(cf. [Arkani-Hamed, Huang, Huang ’20], [Bern, Kosmopoulos, Zhiboedov ‘21] at tree level)
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Almost all
contributions from
spins
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Comparing the real and imaginary parts
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The real part 
suppressed by
~2 orders of  magnitude

Error bars smaller than the line widths
(truncate at             and extrapolate)



Fixed scattering angle,                  
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Logarithmic scale

Zeros

Exponential 
suppression

Values at integer s computed 
with arbitrary precision

(related to decay widths and 
mass shifts)



Test an old-standing conjecture
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Heuristic arguments:                           as                , where
is the tree-level on-shell action

[Gross, Mende, Manes ‘87-89]

Exponential 
suppression
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Thank you!
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